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TILING CONVEX SETS BY TRANSLATES 

BY 

G. T. SALLEE 

ABSTRACT 

Let K be a compact, convex subset of E ~ which can be tiled by a finite number 
of disjoint (on interiors) translates of some compact set Y. Then we may write 
K = X + Y, where X is finite. The possible structures for K, X and Y are 
completely determined under these conditions. 

I .  Introduction 

Suppose K is a convex body (set with interior points) in E d, d-dimensional  

Euclidean space. A tiling of K is a representat ion of K as the union of sets 

K1, " ~, Kn, which are disjoint on interiors. We wish to investigate the problem 

of tiling K by translates, that is, by K, which are all translates of each other. 

Several results of this type are known, the most general being due to G r o e m e r  

[1], [2], who solved the problem for the case when each Ki is convex, and Stein 

[5], who dealt with the case when K is a cube. In this paper  we solve the problem 

completely for compact ,  convex bodies K. 

It turns out to be useful to phrase the problem in terms of vector sums, where 

the vector sum U + V  is { u + v : u E U ,  v E V } .  In particular, note that if 

U = {u0}, U + V is simply a translate of V by Uo. 

The following notation will be fixed for the remainder  of the paper.  K is a 

compact ,  convex body in Ea; K = X +  Y where X is finite, Y is some set 

satisfying Y =  cl(int Y) and the translates {x, + Y:x ,  E X}  are disjoint on 

interiors. The restriction on Y is not terribly critical, but it does allow us to 

simplify some of the arguments.  We will also assume that a coordinating system 

is used so that K, X and Y all lie in the halfspace {e = ( e ~ , . . . ,  ed): Et _-> 0}. 

In general we will use the standard terminology about  convex sets without 

definition, referring the reader  to Gr / inbaum's  book [3] in case of doubt. One 

easily-defined special term we will use is that of d-box- - the  alSne image of a 

d-dimensional  cube. Two d-boxes  are parallel if their facets are parallel. We will 
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also say that the sets R and S are oblique if their affine hulls meet in a single 

point. 

Let Z(p,  q) denote the set of positive integers {0, p , - . - ,  (q - 1)p}. Then if the 

integer n is the product pl × p2 × " '"  × p~ (where the p~ are positive, but not 

necessarily prime or in increasing order), it is easy to show that 

Z(1, n) = Z ( 1 , p l ) +  Z(pl ,p2)+ Z(pl  p2, p3) + " '" + Z(p~ × "'" X ps-l,ps), 

and that each integer is represented in a unique way. Moreover,  C. T. Long [4] 

has shown the converse-- that  the above is the only way to write the set Z(1, n) 

in a unique way. More precisely, he showed: 

(1.1) Suppose the set Z(1,  n)= A ,  + A2+ " "  + As where the A, are sets of 

non-negative integers and that each integer m, 0 <= m < n, can be written uniquely 

in the form a~ + ..  • + as where a, E A,. Then there exists a factorization of 

n = p~ × . . .  × ps such that, after rearrangement if necessary, 

A1 = Z(1,p~), A2 = Z ( p , , p 2 ) , " ' , A s  = Z(p~ × . . .  × ps-~,ps). 

It is these types of decompositions which will be useful to us. If M is the sum 

of one or more of the Z(p, q), we term M a Moorish set. (The name comes from 

the fact that such a sum has patterns within patterns, much as Moorish 

decorations.) The sum of the remaining Z(p, q) needed to make up the sum for 

Z(1, n) will be termed the complementary Moorish set to M. If M is a Moorish 

set, M + [0, 1] will be termed a Moorish block; it consists of a finite set of 

intervals. 

Suppose EI, E 2 , - - ' ,  E, are edges of an r-box, and M 1 , - . . ,  M, are Moorish 

sets contained in E~,. • . ,  E, respectively. Then M~ + -- • + M, will be termed a 

Moorish r-set. In a similar way, the sum of r Moorish blocks will be called a 

Moorish r-block. Note that a Moorish r-block W is simply the sum of a Moorish 

r-set, M, and an appropriate r-box, B. A Moorish r-block W = M +  B is 

complementary to the Moorish r-set M '  if M and M'  are sums of complementary 

Moorish sets. An illustration of K as the sum of two complementary Moorish 

sets may be seen in Fig. 1, where X is represented by dots and Y by the squares. 

One final definition: C is a t-fold cylinder over C'  if C = C ' +  I1 + " "  + L 

where the L are intervals which are oblique to each other and to C'  

(1.2) THEOREM. Let K be a compact, convex body in E d which is written as 

X + Y, where X is finite, Y = cl(int Y),  the sets {x, + int Y: x, E X}  are disfoint, 

and let j be the dimension of the convex hull of X, conv (X). Then X is a Moorish 

j-set, K is a j-fold cylinder (in directions parallel to the edges of conv (X)) over a 
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convex set K' which is oblique to conv (X), and Y is the sum o[ K' and a Moorish 

j-block complementary to X. Moreover, any two o[ the three sets K, X, Y uniquely 

determine the third. 

The above theorem is so complete because the proof is an inductive one and 

we need most of the hypotheses at each step. The basic strategy is to first solve 

the case j = d = 1 by using Long's result. Then if j = 1, d > 1, any line through K 

parallel to conv (X) must break up K as in the case d = 1. For j > 1 take a facet 

of conv (X) normal to u and use the observation that the face of K with outer 

normal u, F(K, u) = F(X, u)+ F(Y, u), and use our inductive hypothesis on 

these faces. 

2. The one-dimensional case 

X, Y and K are as defined above; in particular, recall that they lie in 

{(el," • ", ed): el _-> 0). Now let H(r) denote the halfspace { ( e , . . . ,  ed): e, _-< r}. 

Then the following assertion is immediate for all dimensions d: 

(2.1) K n H(r)C_ (X n H(r))+ (Y  n H(r)). 

We now restrict ourselves to the case when K C_ E z. In this case we will not 

distinguish between a point and its coordinate. Without loss of generality, we 
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may suppose that 0 ~ X n Y n K and that the first two members of X are 0 and 

1 (that is, if x ~ X and x < 1, then x = 0). Under  these assumptions and since Y 

is closed, we have the following corollary to (2.1): 

(2.2) The half-open interval [0, 1) is contained in Y. Hence, the closed interval 
[0, 1] _C Y. 

We may use this to prove the following central result: 

(2.3) Under the assumptions above on X, Y and K, then Y = [0, 1] + Yo where 
both X and Yo are sets of integers and K = [0, k ] where k is an integer. 

PROOF. We will show that the initial segments X(n)= X O H ( n ) ,  Y(n)= 
Y n H(n) and K(n) = K n H(n) are as described for each integer by induction 

on n. By (2.2) and our initial assumptions, we know the assertion is true for 

n = 1. We now wish to prove it for n + 1. 

The assertion could fail only if one of the following happens: 1) K = [0, k] 

where n < k < n + l ; 2 )  t h e r e i s a p o i n t x 0 E X  such that n < x 0 < n + l ; 3 )  Y 

contains an interval [a, b] where n _-< a < b =< n + 1, but [n, n + 1] ~ Y (since Y 

is the closure of its interior, we know Y is the union of segments). 

The first case is impossible since X(n) ,  Y(n) will sum to make K(n + 1) an 

integer. For the second case, let x0 be the smallest non-integer value of X and 

choose z so that n < z < xo. Then z E x(z)+ Y where x(z) is an integer. If 

x(z)#O,  then x(z)_->l. Since z - x ( z ) E  Y, z - x ( z ) E [ m , m + l ]  for some 

m < n .  But then [ n , n + l ] = x ( z ) + [ m , m + l ]  meets Xo+[0,1] on interiors. 

Thus x ( z ) - - 0 ,  and hence [n,z]_C Y for all z <x0.  But now we derive a 

contradiction by observing that 1+ [n, z] has a non-empty intersection with 

x0 + [0, 1]. Hence, the second case does not occur. 

In the third case, we may as well suppose that if [a, b] _C [a',  b'] _C Y, then 

a = a ' ,  b = b'. Now suppose n < a and choose z so that n < z < a. Reasoning 

as above with z E x(z)+ Y shows x(z)= 0 (since x(z)<= n + 1 already implies 

x(z) is an integer). Thus the interval [n, a] C_ Y and so In, b] _C Y, contrary to 

our assumption that [a, b] was maximal. Similar reasoning disposes of the 

subcase when b < n + 1 and the assertion is proved. 

With the above result at hand, we are now in a position to prove Theorem 

(1.2) for d -- 1. It follows from (2.3) that K -- [0, 1] + Y0 + X. Put another  way, 

since X and Yo are sets of integers, each of the integers { 0 , 1 , . . . , k -  1} is 

uniquely expressible in the form x + y for some x ~ X, y ~ Y0. But this is 

exactly the situation covered by (1.1) and so it follows that X is a Moorish set 

and Y is a Moorish block. In addition, it follows easily that K and X determine 
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]I0, and thus Y, and also that K and Y determine X. It is trivial that X and Y 

determine K. 

3. Proof of theorem when j = 1 

By the previous section our result is known when d = 1 and when j = 

dim (aft X ) =  1. We will proceed by induction on d. So assume the result is 

known for j = 1 whenever d < do, and suppose dim ( K ) =  do. 

Let L be some line parallel to conv(X) which meets K. Consider the set 

KL = K fq L. Then dim (K,)  < do and KL = X + YL for some suitable Y, C_ Y. 

By our induction hypothesis, X, YL and KL are as described in (2.3). Moreover, 

YL is uniquely determined by X and'KL and its length is an integer multiple of 

~(X), the distance between the two nearest points of X (0 and 1 in the proof of 

(2.3)). But the length of YL is a continuous function of L (so long as KL ~ 0 )  and 

so the length of YL is a constant. That is, all line segments K f3 L parallel to 

conv (X) have the same length. Since K is convex, it immediately follows that K 

is a cylinder over some base K*, and that K* is convex. 

It is trivial that X is a Moorish 1-set by our induction hypothesis. Moreover, 

each YL is a Moorish 1-block uniquely determined by X. Hence Y is a union of 

translates of any given Y~ and thus Y = K* + Y* for some Moorish 1-block Y*. 

Finally, since each YL is uniquely determined by X, and since Y* is a translate of 

the YL, Y is uniquely determined by X. 

4. Some preliminary results 

Before going on with the proof of the general case of the theorem, we need 

some additional results. This first is a generalization of a result due to Stein [5] 

which may be proved in exactly the same way. 

(4.1) Let K be a box in E d with edges which have integral length and suppose 

K is the union of translates of a fixed set Y which is bounded by a finite number of 

subsets of hyperplanes parallel to the facets of K at an integer distance from them. 

Then Y is the product Y1 × "'" × Yd where each Y~ lies in an edge of K. 

Our other needed lemma refers to summands of boxes. 

(4.2) Let B, C, D be convex bodies in E d with B = C + D where B and C are 

parallel boxes in E ~. Then D is a box parallel to B and C. 

PROOF. We first observe that D must be a polytope. For if not, there exists 

an infinite set U of directions such that F(C, u ) =  {co}, a vertex of C and 
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F(D,u)# F(D,u') if u, u'@ U, u# u'. But then since F(C,u)+ F(D,u)= 
F(B, u) it would follow that B has an infinite number of vertices, contrary to 

assumption. 

Now let U(B), U(C) and U(D) denote the set of unit outer normais to the 

facets of B, C and D, respectively. Then it is well known that U(B)D 
U(C)+ U(D). However, by assumption, U(B)= U(C), hence U(B)D_ U(D). 
But since U(B) consists of d opposite pairs of directions, and since D is 

bounded, it follows that U(D) must contain each of those pairs. That is, 

U(D) = U(B). Put differently, the facets of D occur in d parallel pairs. Hence, 

D is a box. 

5. Proof of theorem 

For the remainder of the proof we use a double induction on d and j. When 

j --- d, we first show that K, X * =  conv(X) and Y * =  conv(Y) are all parallel 

boxes. Then, after establishing that the points of X lie on the integer lattice, we 

may apply Stein's result to get the bulk of the theorem. After this, the general 

case follows by taking intersections with K by j-fiats parallel to X (a fiat is a 

translate of a subspace). 

Part 1. Suppose j = d = d o > l  and suppose the result is known for all 

values of d whenever j < do. Our initial aim is to show that K, X* and Y* are all 

parallel boxes. 

Let F(X*, u) be any facet of X* lying in the hyperplane H(X*, u). Now let H 

be a hyperplane parallel to H(X*, u) and so near to it that no members of X lie 

in the open slab between H and H(X*, u). If H + denotes that closed halfspace 

determined by H which contains H(X*, u), then it follows from (2.1) that, after 

translation if necessary, H÷NK=F(X,u)+(H+A Y). Now we apply our 

induction hypothesis to see that H÷N K is a ( d - 1 ) - f o l d  cylinder over a 

1-dimensional convex set; that is, H ÷ n K is a d-box. Since all but one of the 

facets of H + n K are subsets of facets of K, it thus follows that all facets of K 

which meet F(K, u) occur in parallel pairs. 

Now let $1, $2 be two "opposite" subfacets (that is, faces of dimension d - 2) 

of F(X*, u). We may suppose that S~ lies in the facets F(X*, u) and F(X*, v,). 

Apply the argument above to both facets F(X*, vl) and F(X*,  v2). Then all 

facets of K which meet F(K, vl) or F(K, v2) also occur in parallel pairs. 

Projecting K orthogonally (call the map 7r) onto the two-dimensional subspace 

orthogonal to S, and $2, it is not hard to see that one of these pairs of facets 

meeting F(K, Vl) must include F(K, u). Similarly for F(K, v2). In particular, 



374 G.T. SALLEE Israel J. Math. 

rrF(K, vl), IrF(K, u), zcF(K, v2) and zrF(K, - u )  are the edges of a parallelo- 

gram. Thus, vl = - v2. This is true for all pairs of opposite subfacets of F(X*, u), 
so all facets of X* meeting F(X*, u) also occur in parallel pairs, which are 

respectively parallel to those facets of K meeting F(K, u). 
Continuing, we begin the argument over again for F(X*, Vl) and observe that 

all facets of X* meeting F(X*, Vl) occur in parallel pairs and one of the pairs 

includes F(X*, u)---and hence jr(X*, - u). 

Since F(X*, u) is a (d - 1)-box, and since every facet of X* meeting F(X*, u) 
in a subfacet also meets F(X*, - u) in a subfacet, it follows that X* is a cylinder 

over F(X*, u). That is, X* is a box. The same reasoning shows that K is a box 

parallel to X*. From (4.2), it follows that Y* is also a box parallel to K and X*. 

Part 2. We are still assuming j = d = do > 1 and that the theorem has been 

proved for all values of d whenever j < do. By the above we now know that K, 

X*, Y* are parallel boxes. From this fact, it is easy to deduce that all of the 

edges incident to corresponding vertices of K, X* and Y* are parallel. 

Thus, by a suitable choice of coordinate systems, and translations if necessary, 

we may suppose that K, X and Y all lie in the positive orthant 

{ ( ~ , , " ' ,  ~d): ~, --> 0}, 

that the origin lies in each, that each axis of the coordinate system contains an 

edge of K, and that the points ( 0 , - . . ,  1, 0 , - - . ,  0) are each first members of X 

along the various axes,-- that  is, if ( 0 , . . . , a ,  0 , . - . , 0 ) E  X, and a < 1, then 

a = 0. Under  these hypotheses, we wish to show that every member  of X lies on 

the integer lattice. 

We may order  the x E X lexicographically, that is, (~, . . . ,  ~d)<= (71,,"', 71d) 
iff s¢~ = r/i, i = 1, • • . ,  k - 1, sck =< r/k. With respect to this ordering, choose the first 

member  of X, if it exists, which is not on the integer lattice. Call it Xo= 

(s%,,"',sc0d). Note that yl = (sc01, s¢02+ a," ,~od + a) is a boundary point be- 

tween Xo+ Y and xl + Y for some Xl< Xo if 0 <  ct < 1. Choose a so that a 

(d - 1)-disc around yl still belongs to x~ + Y. Then y~ - x~ is a boundary point of 

Y. We will term it a ~:7-boundary point since Y lies in the - ~:1 direction from 

y l - x ~ .  In an analogous way define sC~-boundary points. 

But then y~-  xt is a ~¢~-boundary point of x2+ Y where x2= < Xo if y ~ -  x~ is an 

interior point of K. And thus y l - x ~ - x 2  is a ~¢~-boundary point of Y. This 

process may be continued only a finite number of times before y ~ - x ~ - x 2 -  

. . . .  xr is a seT-boundary point of K. But by hypothesis, each of the x, lie on the 

integer lattice and since y~ - x~ . . . . .  x, has sC~-coordinates of 0, it follows that 

y~, and hence x0, has an integer sOl-coordinate. 
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In a similar way by considering the boundary point y2= 

(~:ol + a, ~:02, ~:o2 + a , . . . ,  God + a) ,  we may show that ~:o2 is an integer. One must be 

somewhat careful here to choose a so small that only members of X with integer 

coordinates lie before y2. Once this is done, however, the proof above works. 

Then we may dispose of ~o3," • ", ~:od in that order  to conclude that Xo does lie on 

the integer lattice, contrary to hypothesis. 

Hence, every member  of X lies on the integer lattice, as we wished to show. 

From this, it is almost immediate that Y is a union of integer lattice translates of 

the corner block, that is, the box B = { ( e l , " ' ,  ed): 0 =  < el = 1}. It also then 

follows that each edge of K has integer length. 

We now see that all of the hypotheses needed to apply to Stein's result (4.1) 

are satisfied. Hence, we can conclude that Y is a direct product of the sets which 

lie along the edges of Y*. Since each of these sets is known to be a Moorish 

block, it follows that Y is a Moorish block. 

But then Y = Y0 + B, where B was defined above and Y0 is a subset of the 

integer lattice. So K = X + Yo + B, or (X + B)  tiles K. Thus, as above, X + B is 

a Moorish block. Factoring out B, we are left with the result that X is a Moorish 

set complementary to Y0. 

Since X and Y uniquely determine each other in the 1-dimensional case, and 

since the d-dimensional case is simply a direct product of the 1-dimensional 

cases, X and Y uniquely determine each other when j = d. 

Part 3. Most of the work is now behind us and we are in a position to 

conclude the proof. In this portion of the argument we assume that jo < do, that 

the result is known for all values of d if j < j0 and for values of d < do when 

] = j0. We wish to establish the result for j = jo and d = do. The idea is precisely 

as in Section 3 which dealt with the case/ '  = 1. 

Let F be a j-dimensional flat containing X* and let F1 be a parallel flat 

meeting K. Then, as in the 1-dimensional case, it is clear that F i N  K = 

X + (/:2 N Y) if F2 is another  suitably-chosen parallel j-flat. Moreover,  F~ n K is 

a j-dimensional convex set. Hence, by our induction hypothesis, X*, F~ n K and 

cony (F2 n Y) are boxes. In particular, if e ~ , . . . ,  e~ represent a set of affinely 

independent edges of cony(X) ,  then F~ N K is a cylinder in each of these 

directions. Moreover,  the length of F~ n K in direction el is a continuous 

function of F~ and is also an integer if the coordinates correspond to X properly 

(as they were set in Part 2). Hence, the length of F~ n K in direction el is 

constant. Since this is true for all F1, it follows that K is a cylinder over, say, a set 

K~ in each direction e~, • • •, ei. It iseasy to see K1 is convex and that K~ is oblique 

to each of the e,. 
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Moreover, by a similar reasoning, all the F2 n Y are translates of each other 
and Y is also a j-fold cylinder in directions el, " ", ej over K1. In addition, since 

each two of FI N K, X and F2 n Y determine each other uniquely, so do K, X 

and Y. 

This completes the proof. 
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Correction to ZF and Boolean Algebra, by J. M. Plotkin, Israel Journal of 

Mathematics, Vol. 23, Nos. 3-4, 1976, pp. 298-308. 

The result of Grant used in Proposition 1.1 is false [2]. But the proposition can 

be established as follows. It is known that for A, a countable atomless Boolean 

algebra, Aut (,~) is simple and uncountable [1]. A result of Marsh implies that 

the definable automorphisms are a normal subgroup of Aut (A). The uncounta- 

bility and simplicity of Aut (,4) show that the definable automorphisms of ,4 are 

trivial. Hence the automorphisms of its generic copy A are trivial. We wish to 

thank F. D. Hammer for informing us of the papers of Ziegler and Monk. 
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